1.Relation and Function
hard

If $f\left( x \right) = {\left( {\frac{3}{5}} \right)^x} + {\left( {\frac{4}{5}} \right)^x} - 1$ , $x \in R$ , then the equation $f(x) = 0$ has

A

no solution

B

one solution

C

two solution

D

more than two solutions

(JEE MAIN-2014)

Solution

$f\left( x \right) = {\left( {\frac{3}{5}} \right)^x} + {\left( {\frac{4}{5}} \right)^x} – 1$

Put $f\left( x \right) = 0$

$ \Rightarrow 0 = {\left( {\frac{3}{5}} \right)^x} + {\left( {\frac{4}{5}} \right)^x} – 1$

$ \Rightarrow {\left( {\frac{3}{5}} \right)^x} + {\left( {\frac{4}{5}} \right)^x} – 1$

$ \Rightarrow {3^x} + {4^x} = {5^x}$ 

        For $x=1$

        ${3^1} + {4^1} > {5^1}$

for $x=3$

${3^3} + {4^3} = 91 < {5^3}$

Only for $x=2$, equation $(1)$ Satisfy 

So, only one solution $(x=2)$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.